Characterization of Background Temperature Dynamics of a Multitemporal Satellite Scene through Data Assimilation for Wildfire Detection

Author:

Udahemuka GustaveORCID,van Wyk Barend J.,Hamam Yskandar

Abstract

Detection of an active fire in an image scene relies on an accurate estimation of the background temperature of the scene, which must be compared to the observed temperature, to decide on the presence of fire. The expected background temperature of a pixel is commonly derived based on spatial-contextual information that can overestimate the background temperature of a fire pixel and therefore results in the omission of a fire event. This paper proposes a method that assimilates brightness temperatures acquired from the Geostationary Earth Orbit (GEO) sensor MSG-SEVIRI into a Diurnal Temperature Cycle (DTC) model. The expected brightness temperatures are observational forecasts derived using the ensemble forecasting approach. The threshold on the difference between the observed and expected temperatures is derived under a Constant False Alarm Rate (CFAR) framework. The detection results are assessed against a reference dataset comprised of MODIS MOD14/MYD14 and EUMETSAT FIR products, and the performance is presented in terms of user’s and producer’s accuracies, and Precision-Recall and Receiver Operating Characteristic (ROC) graphs. The method has a high detection rate when the data assimilation is implemented with an Ensemble Kalman Filter (EnKF) and a Sampling Importance Resampling (SIR) particle filter, while the weak-constraint Four-Dimensional Variational Assimilation (4D-Var) has comparatively lower detection and false alarm rates according to the reference dataset. Consideration of the diurnal variation in the background temperature enables the proposed method to detect even low-power fires.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on Forest Fire Point Image Recognition of Agricultural and Forestry Satellites Based on the FRJLI Algorithm;2024 International Conference on Machine Intelligence and Digital Applications;2024-05-30

2. Object Tracking Based on Satellite Videos: A Literature Review;Remote Sensing;2022-07-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3