Monitoring 2011–2020 Traffic Patterns in Wuhan (China) with COSMO-SkyMed SAR, Amidst the 7th CISM Military World Games and COVID-19 Outbreak

Author:

Tanveer HashirORCID,Balz TimoORCID,Cigna FrancescaORCID,Tapete DeodatoORCID

Abstract

Vehicle detection from satellite imagery can support different applications, such as security and situational awareness. In the civilian domain, it can provide quantitative evidence to investigate urban mobility and traffic patterns in cities. Satellite synthetic aperture radar (SAR) can help in detecting vehicles in (almost) all weather conditions and during the day and night. In this study, the capability of SAR StripMap imaging mode data to monitor traffic is analyzed using the case study of Wuhan, China. In ordinary times, the bridges crossing the Yangtze river are the key infrastructure allowing for urban mobility in Wuhan. More recently, the city has been the first in the world to be put in lockdown due to the outbreak of the Coronavirus Disease of 2019 (COVID-19). Using a very long time series of 294 COSMO-SkyMed StripMap HIMAGE mode scenes collected from 2011 to 2020, we detected vehicles on seven bridges, estimated their speed, and analyzed the traffic pattern over time. Vehicles are detected based on their azimuth shift caused by their across-track motion. Our goal is to monitor the variations in traffic instead of single-car detection. The results from 2011 to 2019 show a general increase in the number of vehicles crossing the bridges, as new infrastructure was built over the years. Variations in detected vehicle numbers were especially found during the two events of the 7th International Military Sports Council (CISM) Military World Games in October 2019, and the COVID-19 lockdown in early 2020. These events were therefore used for internal validation of our assessment of traffic patterns. On the other side, TomTom traffic index data were used for external validation. The results and their comparison with TomTom data prove the effectiveness of our method in detecting traffic patterns, but also demonstrate that mostly large vehicles (e.g., trucks or buses) are detected. Future work should be carried out to improve the detection rate of smaller vehicles.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3