The Chemical Space of Terpenes: Insights from Data Science and AI

Author:

Hosseini Morteza1ORCID,Pereira David M.1ORCID

Affiliation:

1. REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, 4050-313 Porto, Portugal

Abstract

Terpenes are a widespread class of natural products with significant chemical and biological diversity, and many of these molecules have already made their way into medicines. In this work, we employ a data science-based approach to identify, compile, and characterize the diversity of terpenes currently known in a systematic way, in a total of 59,833 molecules. We also employed several methods for the purpose of classifying terpene subclasses using their physicochemical descriptors. Light gradient boosting machine, k-nearest neighbours, random forests, Gaussian naïve Bayes and Multilayer perceptron were tested, with the best-performing algorithms yielding accuracy, F1 score, precision and other metrics all over 0.9, thus showing the capabilities of these approaches for the classification of terpene subclasses. These results can be important for the field of phytochemistry and pharmacognosy, as they allow the prediction of the subclass of novel terpene molecules, even when biosynthetic studies are not available.

Funder

FCT (Fundação para a Ciência e Tecnologia) /MCTES

European Union’s Horizon 2020 Research and Innovation Programme

Publisher

MDPI AG

Subject

Drug Discovery,Pharmaceutical Science,Molecular Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Studying the Response of Greek Basil Ocimum basilicum var. minimum to Treatment with High Doses of Selenium;European Journal of Theoretical and Applied Sciences;2024-07-01

2. Natural Guardians: Natural Compounds as Radioprotectors in Cancer Therapy;International Journal of Molecular Sciences;2024-06-25

3. Terpenes in the management of chronic kidney disease;Naunyn-Schmiedeberg's Archives of Pharmacology;2024-04-29

4. From Plants to Wound Dressing and Transdermal Delivery of Bioactive Compounds;Plants;2023-07-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3