Manipulation of New Fluorescent Magnetic Nanoparticles with an Electromagnetic Needle, Allowed Determining the Viscosity of the Cytoplasm of M-HeLa Cells

Author:

Ramazanova Iliza1,Suslov Maxim1,Sibgatullina Guzel1,Petrov Konstantin12,Fedorenko Svetlana2,Mustafina Asiya2ORCID,Samigullin Dmitry13ORCID

Affiliation:

1. Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, Lobachevsky Str., 2/31, 420111 Kazan, Russia

2. Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, 420088 Kazan, Russia

3. Department of Radiophotonics and Microwave Technologies, Kazan National Research Technical University Named after A.N. Tupolev-KAI, 10 K. Marx St., 420111 Kazan, Russia

Abstract

Magnetic nanoparticles (MNPs) have recently begun to be actively used in biomedicine applications, for example, for targeted drug delivery, in tissue engineering, and in magnetic resonance imaging. The study of the magnetic field effect on MNPs internalized into living cells is of particular importance since it allows a non-invasive influence on cellular activity. There is data stating the possibility to manipulate and control individual MNPs utilizing the local magnetic field gradient created by electromagnetic needles (EN). The present work aimed to demonstrate the methodological and technical approach for manipulating the local magnetic field gradient, generated by EN, novel luminescent MNPs internalized in HeLa cancer cells. The controlling of the magnetic field intensity and estimation of the attractive force of EN was demonstrated. Both designs of EN and their main characteristics are also described. Depending on the distance and applied voltage, the attractive force ENs ranged from 0.056 ± 0.002 to 37.85 ± 3.40 pN. As a practical application of the presented, the evaluation of viscous properties of the HeLa cell’s cytoplasm, based on the measurement of the movement rate of MNPs inside cells under impact of a known magnetic force, was carried out; the viscosity was 1.45 ± 0.04 Pa·s.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Drug Discovery,Pharmaceutical Science,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3