Towards Radiolabeled EGFR-Specific Peptides: Alternatives to GE11

Author:

Judmann Benedikt12,Wängler Björn2ORCID,Schirrmacher Ralf3ORCID,Fricker Gert4ORCID,Wängler Carmen1ORCID

Affiliation:

1. Biomedical Chemistry, Clinic of Radiology and Nuclear Medicine, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany

2. Molecular Imaging and Radiochemistry, Clinic of Radiology and Nuclear Medicine, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany

3. Department of Oncology, Division of Oncological Imaging, University of Alberta, Edmonton, AB T6G 1Z2, Canada

4. Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, 69120 Heidelberg, Germany

Abstract

The human epidermal growth factor receptor (EGFR) is closely related to several cancer-promoting processes and overexpressed on a variety of tumor types, rendering it an important target structure for the imaging and therapy of several malignancies. To date, approaches to develop peptidic radioligands able to specifically address and visualize EGFR-positive tumors have been of limited success. Most of the attempts were based on the lead GE11, as this peptide was previously described to be a highly potent EGFR-specific agent. However, since it has recently been shown that GE11 exhibits an insufficient affinity to the EGFR in monomeric form to be suitable as a basis for the development of tracers based on it, in the present work we investigated which other peptides might be suitable as lead structures for the development of EGFR-specific peptidic radiotracers. For this purpose, we developed 68Ga-labeled radioligands based on the peptides D4, P1, P2, CPP, QRH, EGBP and Pep11, having been described before as EGFR-specific. In addition, we also tested three truncated versions of the endogenous EGFR ligand hEGF (human epidermal growth factor) with respect to their ability to specifically target the EGFR with high affinity. Therefore, chelator-modified labeling precursors of the mentioned peptides were synthesized, radiolabeled with 68Ga and the obtained radioligands were evaluated for their hydrophilicity/lipophilicity, stability against degradation by human serum peptidases, in vitro tumor cell uptake, and receptor affinity in competitive displacement experiments on EGFR-positive A431 cells. Although all NODA-GA-modified (NODA-GA: (1,4,7-triazacyclononane-4,7-diyl)diacetic acid-1-glutaric acid) labeling precursors could be obtained more or less efficient in yields between 5 and 74%, the 68Ga-radiolabeling proved to be unsuccessful for two of the three truncated versions of hEGF ([68Ga]Ga-8 and [68Ga]Ga-9), producing several side-products. For the other agents [68Ga]Ga-1–[68Ga]Ga-7, [68Ga]Ga-10 and [68Ga]Ga-11, high radiochemical yields and purities of ≥98% and molar activities of up to 114 GBq/µmol were obtained. In the assay investigating the radiopeptide susceptibilities against serum peptidase degradation, the EGBP-based agent demonstrated a limited stability with a half-life of only 66.4 ± 3.0 min, whereas the other tracers showed considerably higher stabilities of up to an 8000 min half-life. Finally, all radiotracer candidates were evaluated in terms of tumor cell internalization and receptor binding potential on EGFR-positive A431 cell. In these experiments, all developed agents failed to show an EGFR-specific tumor cell uptake or a relevant EGFR-affinity. By contrast, the positive controls tested under identical conditions, [125I]I-hEGF and hEGF demonstrated the expected high EGFR-specific tumor cell uptake (33.6% after 1 h, being reduced to 1.9% under blocking conditions) and affinity (IC50 value of 15.2 ± 3.3 nM). Thus, these results indicate that none of the previously described peptidic agents developed for EGFR targeting appears to be a reasonable choice as a lead structure for the development of radiopeptides for targeting of EGFR-positive tumors. Likewise, the tested truncated variants of the endogenous hEGF do not seem to be promising alternatives for this purpose.

Funder

Federal Ministry of Education and Research

Publisher

MDPI AG

Subject

Drug Discovery,Pharmaceutical Science,Molecular Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3