Shape Sensing with Rayleigh Backscattering Fibre Optic Sensor

Author:

Xu Cheng,Sharif Khodaei ZahraORCID

Abstract

In this paper, Rayleigh backscattering sensors (RBS) are used to realize shape sensing of beam-like structures. Compared to conventional shape sensing systems based on fibre Bragg grating (FBG) sensors, RBS are capable of continuous lateral sensing. Compared to other types of distributed fibre optic sensors (FOS), RBS have a higher spatial resolution. First, the RBS’s strain sensing accuracy is validated by an experiment comparing it with strain gauge response. After that, two shape sensing algorithms (the coordinate transformation method (CTM) and the strain-deflection equation method (SDEM)) based on the distributed FOS’ input strain data are derived. The algorithms are then optimized according to the distributed FOS’ features, to make it applicable to complex and/or combine loading situations while maintaining high reliability in case of sensing part malfunction. Numerical simulations are carried out to validate the algorithms’ accuracy and compare their accuracy. The simulation shows that compared to the FBG-based system, the RBS system has a better performance in configuring the shape when the structure is under complex loading. Finally, a validation experiment is conducted in which the RBS-based shape sensing system is used to configure the shape of a composite cantilever-beam-like specimen under concentrated loading. The result is then compared with the optical camera-measured shape. The experimental results show that both shape sensing algorithms predict the shape with high accuracy comparable with the optical camera result.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3