Finite Element Modeling and Analysis of Perforated Steel Members under Blast Loading

Author:

Nawar Mahmoud T.12,El-Zohairy Ayman3ORCID,Arafa Ibrahim T.2

Affiliation:

1. Engineering Management Department, College of Engineering, Prince Sultan University, Riyadh 11586, Saudi Arabia

2. Structural Engineering Department, Zagazig University, Zagazig 44519, Egypt

3. Department of Engineering and Technology, Texas A&M University-Commerce, Commerce, TX 75429, USA

Abstract

Perforated steel members (PSMs) are now frequently used in building construction due to their beneficial features, including their proven blast-resistance abilities. To safeguard against structural failures from explosions and terrorist threats, perforated steel beams (PSBs) and perforated steel columns (PSCs) offer a viable alternative to traditional steel members. This is attributed to their impressive energy absorption potential, a result of their combined high strength and ductile behavior. In this study, numerical examinations of damage assessment under the combined effects of gravity and blast loads are carried out to mimic real-world scenarios of external explosions close to steel structures. The damage assessment for PSBs and PSCs considers not just the initial deformation from the blast, but also takes into account the residual capacities to formulate dependable damage metrics post-explosion. Comprehensive explicit finite element (FE) analyses are performed with the LSDYNA software. The FE model, when compared against test results, aligns well across all resistance phases, from bending and softening to tension membrane regions. This validated numerical model offers a viable alternative to laboratory experiments for predicting the dynamic resistance of PSBs and PSCs. Moreover, it is advisable to use fully integrated solid elements, featuring eight integration points on the element surface, in the FE models for accurate predictions of PSBs’ and PSCs’ behavior under blast loading. A parametric study is presented to investigate the effect of web-opening shapes, retrofitting, and different blast scenarios. The results obtained from the analytical FE approaches are used to obtain the ductile responses of PSMs, and are considered an important key in comparisons among the studied cases.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3