An Evaluation Framework on Additive Manufacturing for Hydraulic Systems in Wind Turbines Focused on System Simplification

Author:

Kocsis Gergely,Xydis GeorgeORCID

Abstract

The wind energy industry showed rapid growth in the past decade, pushing designs to the physical limits. In the last few years, the exponential growth of the wind turbine sizes capped, and the performance upgrades are reached with optimization processes. The first wave was on major parts, but with time advancing the “cost out” strategies are pushed to minor components. A major problem is service costs and the continuous search for missing spare parts in the market. The main aim of this study is to identify when is the best entry point for the additive manufacturing (AM) technology by the hydraulic manufacturer wind turbine companies. From the commercial application for expensive prototypes, it has evolved to economical home use applications. The newly available machines allow printing parts with competing precision to machining equivalents. The material selections range from plastics to metals with mechanical properties equally good or better. This project aims to provide a comprehensive review of the implementation of AM for hydraulic systems in wind turbines. Application screening was done by desk research and on AM technologies. Scientific research has been found on the topic for benchmarking, viability, and cost models. It has been found that there are still missing data for the mechanical properties of the available materials. The result of the decision-weighted matrix shows that the business could gain a competitive advantage by the AM implementation in terms of resources savings and productivity. Although from the technological and market perspective it is justified to initiate before further action the business should review its organization viability.

Publisher

MDPI AG

Subject

Multidisciplinary

Reference46 articles.

1. Production Tax Credithttps://cleanpower.org/

2. Building in the Automotive Sandboxhttps://corporate.ford.com/innovation/building-in-the-automotive-sandbox.html

3. Implementation of Additive Manufacturing Technology at Kyocera Unimerco;Kocsis,2017

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3