A Mixed Flow Analysis of Sewer Pipes with Different Shapes Using a Non-Oscillatory Two-Component Pressure Approach (TPA)

Author:

Khani David,Lim Yeo Howe,Malekpour Ahmad

Abstract

This paper aimed to justify the performance of a non-oscillatory TPA-based model proposed by the authors for capturing transient mix flow in sewer systems consisting of a variety of pipe shapes. The model utilizes a first-order Godunov Finite volume numerical scheme in which a Harten–Lax–van Leer (HLL) Riemann solver was used for calculating the fluxes at the cells’ boundaries. The spurious numerical solution associated with the transient mix flow analysis is suppressed by enhancing the numerical viscosity of the scheme when the pipe pressurization is imminent. Due to the lack of experimental data for systems with pipe shapes other than circular and rectangular, a hypothetical pipe system for which analytical solutions exist was employed to verify the model performance. The results reveal that for all pipe shapes considered, the model provides oscillation-free solutions even at a high acoustic speed of 1400 m/s. It is also observed that the numerical results are in perfect agreement with the analytical solution. The obtained results conclude that the proposed model can be utilized to capture transient responses of sewer systems with any pipe shape.

Funder

United States Geological Survey

Publisher

MDPI AG

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3