Serendipitous, Open Big Data Management and Analytics: The SeDaSOMA Framework

Author:

Cuzzocrea Alfredo12,Ciancarini Paolo3ORCID

Affiliation:

1. iDEA Lab, University of Calabria, 87036 Rende, Italy

2. Department of Computer Science, University of Paris City, 75013 Paris, France

3. DISI Department, University of Bologna, 40126 Bologna, Italy

Abstract

This paper presents and delves into the architecture and intricacies of SeDaSOMA, a sophisticated framework supporting Serendipitous, Data-as-a-Service-oriented, Open big data Management and Analytics. SeDaSOMA meticulously addresses the multifaceted challenges inherent in open big data management and analytics. SeDaSOMA stands as a testament to the evolving landscape of big data management and analytics, embodying a commitment to harnessing advanced functionalities through a synthesis of innovative research findings and cutting-edge tools. In the context of this framework, the paper not only elucidates its structural components but also underscores its pivotal role in facilitating the seamless integration, processing, and analysis of massive and diverse datasets. By providing a comprehensive overview of SeDaSOMA, this paper contributes to the ongoing discourse within the field of big data management and analytics, shedding light on the intricate interplay between technological innovation and practical application. Moreover, as a complement to the discussion on SeDaSOMA, the paper offers a critical exploration of the emerging topics in the realm of big data research. By delineating current state-of-the-art methodologies and forecasting future research trajectories, this overview enriches the scholarly dialogue surrounding the evolving landscape of big data management and analytics, offering insights into the broader implications and potential advancements in the field.

Publisher

MDPI AG

Reference130 articles.

1. Big Data Challenge: A Data Management Perspective;Chen;Front. Comput. Sci. Sci.,2013

2. Big Data Analytics;Russom;TDWI Best Pract. Rep.,2011

3. The Role of Big Data in Smart City;Hashem;Int. J. Inf. Manag.,2016

4. Social-Network-Sourced Big Data Analytics;Tan;IEEE Internet Comput.,2013

5. Storing and Retrieving XPath Fragments in Structured P2P Networks;Bonifati;Data Knowl. Eng.,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3