Overview of Energy Management and Leakage Control Systems for Smart Water Grids and Digital Water

Author:

Giudicianni CarloORCID,Herrera ManuelORCID,Nardo Armando di,Adeyeye KemiORCID,Ramos Helena M.ORCID

Abstract

Current and future smart cities are moving towards the zero-net energy use concept. To this end, the built environment should also be designed for efficient energy use and play a significant role in the production of such energy. At present, this is achieved by focusing on energy demand in buildings and to the renewable trade-off related to smart power grids. However, urban water distribution systems constantly carry an excess of hydraulic energy that can potentially be recovered to produce electricity. This paper presents a comprehensive review of current strategies for energy production by reviewing the state-of-the-art of smart water systems. New technologies (such as cyber-physical systems, digital twins, blockchain) and new methodologies (network dynamics, geometric deep learning) associated with digital water are also discussed. The paper then focuses on modelling the installation of both micro-turbines and pumps as turbines, instead of/together with pressure reduction valves, to further demonstrate the energy-recovery methods which will enable water network partitioning into district metered areas. The associated benefits on leakage control, as a source of energy, and for contributing to overall network resilience are also highlighted. The paper concludes by presenting future research directions. Notably, digital water is proposed as the main research and operational direction for current and future Water Distribution Systems (WDS) and as a holistic, data-centred framework for the operation and management of water networks.

Publisher

MDPI AG

Subject

Multidisciplinary

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3