A Novel Hybrid Internal Pipeline Leak Detection and Location System Based on Modified Real-Time Transient Modelling

Author:

Tajalli Seyed Ali Mohammad1ORCID,Moattari Mazda12ORCID,Naghavi Seyed Vahid3,Salehizadeh Mohammad Reza1ORCID

Affiliation:

1. Department of Electrical Engineering, Marvdasht Branch, Islamic Azad University, Marvdasht 7371113119, Iran

2. Mechateronic & Artificial Intelligence Research Center, Marvdasht Branch, Islamic Azad University, Marvdasht 7371113119, Iran

3. Engineering Devision, Reseach Institute of Petroleum Industry, Tehran 1485733111, Iran

Abstract

A This paper proposes a modified real-time transient modelling (MRTTM) framework to address the critical challenge of leak detection and localization in pipeline transmission systems. Pipelines are essential infrastructure for transporting liquids and gases, but they are susceptible to leaks, with severe environmental and economic impacts. MRTTM tackles this challenge with a three-stage operational process. First, “Data Collection” gathers sensor data from designated observation points. Second, the “Detection” stage identifies leaks. Finally, “Decision-Making” utilizes MRTTM to pinpoint the exact leak magnitude and location. This paper introduces an innovative method designed to significantly enhance pipeline leak detection and localization through the application of artificial intelligence and advanced signal processing techniques. The improved MRTTM framework integrates AI for pattern recognition, state space modelling for leak segment identification, and an extended Kalman filter (EKF) for precise leak location estimation, addressing the limitations of traditional methods. This paper showcases the application of MRTTM through a case study using the K-nearest neighbors (KNN) method on a water transmission pipeline for leak detection. KNN aids in classifying leak patterns and identifying the most likely leak location. Additionally, MRTTM incorporates the EKF, enabling real-time updates during transient events for faster leak identification. Preprocessing sensor data before comparison with the leakage pattern bank (LPB) minimizes false alarms and enhances detection reliability. Overall, the AI-powered MRTTM framework offers a powerful solution for swift and precise leak detection and localization in pipeline systems. The functionality of the framework is examined, and the results effectively approve the effectiveness of this methodology. The experimental results validate the practical utility of the MRTTM framework in real-world applications, demonstrating up to 90% detection accuracy and an F1 score of 0.92.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3