A Numerical Simulation of Electrical Resistivity of Fiber-Reinforced Composites, Part 1: Brittle Cementitious Concrete

Author:

Miri Alireza,Ehsani Rojina,Tehrani Fariborz M.ORCID

Abstract

The durability of concrete has a significant influence on the sustainability and resilience of various infrastructures, including buildings, bridges, roadways, dams, and other applications. Penetration of corrosive agents intensified by exposure to freeze-thaw cycles and the presence of early-age cracks is a common cause of reinforced concrete degradation. Electrical resistivity is a vital physical property of cementitious composites to assess the remained service life of reinforced concrete members subjected to corrosive ions attacks. The application of steel fibers reduces the vulnerability of concrete by limiting crack propagation, but complicates field and laboratory testing due to the random distribution of conductive fibers within the body of the concrete. Numerical simulations facilitate proper modeling of such random distribution to improve the reliability of testing measures. Hence, this paper investigates the influence of fiber reinforcement characteristics on electrical resistivity using multi-physics finite element models. Results examine modeling challenges and include insights on the sensitivity of resistivity measures to fiber reinforcement. Concluding remarks provide expected bias of electrical resistivity in the presence of steel fibers and endeavor to facilitate the development of practical guidelines for assessing the durability of fiber-reinforced concrete members using standard electrical resistivity testing procedures.

Publisher

MDPI AG

Subject

Multidisciplinary

Reference55 articles.

1. From Sustainability to Resilience: A Practical Guide to ENVISION®;Tehrani,2022

2. Is resilience … sustainable?;Nelson;APWA Rep.,2018

3. Tire-Derived Aggregate Cementitious Materials: A Review of Mechanical Properties;Tehrani,2018

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3