Author:
Drexler Petr,Szabó Zoltán,Pernica Roman,Zukal Jiri,Kadlec Radim,Klíma Miloš,Fiala Pavel
Abstract
Herein, we discuss the modeling and verification of RF sensed signals in a simple plasma channel (plasma jet) at the generator frequency of f = 13.56 MHz, assuming plasma discharge at atmospheric pressure. The actual experiment was preceded by a basic numerical analysis and evaluation of several variants of the geometric/numerical model of a simple plasma channel formed in a glass capillary chamber; this step was performed with different electrode configurations. The analyses also included the impact of the location of the sensing element (i.e., the antenna) on the resulting evaluated electromagnetic signal. Furthermore, a numerical model with concentrated parameters facilitated a comparative analysis centered on the impact of plasma concentration and composition in the monitored electromagnetic RF spectrum of the channel. The theoretical outputs were verified via experiments and compared. This methodology finds use in the radio-frequency evaluation of plasma parameters in both simple capillary nozzles and more complex, slit-designed plasma chambers.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献