Revisiting the Lognormal Modelling of Shadowing Effects during Wireless Communications by Means of the α-μ/α-μ Composite Distribution

Author:

Ozelim Luan C. S. M.ORCID,Dias Ugo S.ORCID,Rathie Pushpa N.ORCID

Abstract

Properly modeling the shadowing effects during wireless transmissions is crucial to perform the network quality assessment. From a mathematical point of view, using composite distributions allows one to combine both fast fading and slow fading stochastic phenomena. Numerous statistical distributions have been used to account for the fast fading effects. On the other hand, even though several studies indicate the adequacy of the Lognormal distributon (LNd) as a shadowing model, they also reveal this distribution renders some analytic tractability issues. Past works include the combination of Rayleigh and Weibull distributions with LNd. Due to the difficulty inherent to obtaining closed form expressions for the probability density functions involved, other authors approximated LNd as a Gamma distribution, creating Nakagami-m/Gamma and Rayleigh/Gamma composite distributions. In order to better mimic the LNd, approximations using the inverse Gamma and the inverse Nakagami-m distributions have also been considered. Although all these alternatives were discussed, it is still an open question how to effectively use the LNd in the compound models and still get closed-form results. We present a novel understanding on how the α-μ distribution can be reduced to a LNd by a limiting procedure, overcoming the analytic intractability inherent to Lognormal fading processes. Interestingly, new closed-form and series representations for the PDF and CDF of the composite distributions are derived. We build computational codes to evaluate all the expression hereby derived as well as model real field trial results by the equations developed. The accuracy of the codes and of the model are remarkable.

Publisher

MDPI AG

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3