High-Fidelity Digital Twin Data Models by Randomized Dynamic Mode Decomposition and Deep Learning with Applications in Fluid Dynamics

Author:

Bistrian Diana A.ORCID

Abstract

The purpose of this paper is the identification of high-fidelity digital twin data models from numerical code outputs by non-intrusive techniques (i.e., not requiring Galerkin projection of the governing equations onto the reduced modes basis). In this paper the author defines the concept of the digital twin data model (DTM) as a model of reduced complexity that has the main feature of mirroring the original process behavior. The significant advantage of a DTM is to reproduce the dynamics with high accuracy and reduced costs in CPU time and hardware for settings difficult to explore because of the complexity of the dynamics over time. This paper introduces a new framework for creating efficient digital twin data models by combining two state-of-the-art tools: randomized dynamic mode decomposition and deep learning artificial intelligence. It is shown that the outputs are consistent with the original source data with the advantage of reduced complexity. The DTMs are investigated in the numerical simulation of three shock wave phenomena with increasing complexity. The author performs a thorough assessment of the performance of the new digital twin data models in terms of numerical accuracy and computational efficiency.

Publisher

MDPI AG

Subject

Multidisciplinary

Reference65 articles.

1. Introduction to Finite Element Analysis and Design;Kim,2018

2. Encyclopedia of Computational Mechanics;Codina,2017

3. A domain decomposition non-intrusive reduced order model for turbulent flows

4. A reduced order model for turbulent flows in the urban environment using machine learning

5. POD-DEIM approach on dimension reduction of a multi-species host-parasitoid system;Dimitriu;Ann. Acad. Rom. Sci. Ser. Math. Appl.,2015

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analysis of the dynamic modes of the transonic flow around a cylinder;Journal of the Brazilian Society of Mechanical Sciences and Engineering;2024-08-31

2. Methods for enabling real-time analysis in digital twins: A literature review;Computers & Structures;2024-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3