Estimation Approach for a Linear Quantile-Regression Model with Long-Memory Stationary GARMA Errors

Author:

Essefiani Oumaima1ORCID,El Halimi Rachid1ORCID,Hamdoune Said1ORCID

Affiliation:

1. Mathematics and Applications Laboratory, Abdelmalek Essaadi University, Tangier 90000, Morocco

Abstract

The aim of this paper is to assess the significant impact of using quantile analysis in multiple fields of scientific research . Here, we focus on estimating conditional quantile functions when the errors follow a GARMA (Generalized Auto-Regressive Moving Average) model. Our key theoretical contribution involves identifying the Quantile-Regression (QR) coefficients within the context of GARMA errors. We propose a modified maximum-likelihood estimation method using an EM algorithm to estimate the target coefficients and derive their statistical properties. The proposed procedure yields estimators that are strongly consistent and asymptotically normal under mild conditions. In order to evaluate the performance of the proposed estimators, a simulation study is conducted employing the minimum bias and Root Mean Square Error (RMSE) criterion. Furthermore, an empirical application is given to demonstrate the effectiveness of the proposed methodology in practice.

Publisher

MDPI AG

Reference27 articles.

1. Regression quantiles;Koenker;Econometrica,1978

2. Angrist, J.D., and Pischke, J.S. (2009). Mostly Harmless Econometrics: An Empiricist’s Companion, Princeton University Press.

3. quantile-regression: Analyzing changes in distributions instead of means;Porter;Higher Education: Handbook of Theory and Research,2014

4. Linear quantile regression based on EM algorithm;Tian;Commun. Stat. Theory Methods,2014

5. Quantile regression for linear models with autoregressive errors using EM algorithm;Tian;Comput. Stat.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3