AI-Assisted Body Composition Assessment Using CT Imaging in Colorectal Cancer Patients: Predictive Capacity for Sarcopenia and Malnutrition Diagnosis

Author:

Soria-Utrilla Virginia123ORCID,Sánchez-Torralvo Francisco José124ORCID,Palmas-Candia Fiorella Ximena567,Fernández-Jiménez Rocío2348ORCID,Mucarzel-Suarez-Arana Fernanda56,Guirado-Peláez Patricia234ORCID,Olveira Gabriel1234ORCID,García-Almeida José Manuel23489ORCID,Burgos-Peláez Rosa567

Affiliation:

1. Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Regional Universitario de Málaga, 29007 Malaga, Spain

2. Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen de la Victoria de Málaga, 29010 Malaga, Spain

3. Department of Medicine and Dermatology, University of Málaga, 29016 Malaga, Spain

4. Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Malaga, Spain

5. Endocrinology and Nutrition Department, Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain

6. Diabetes and Metabolism Research Unit, Vall d’Hebron Institut De Recerca (VHIR), 08035 Barcelona, Spain

7. Department of Medicine, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain

8. Department of Endocrinology and Nutrition, Quironsalud Málaga Hospital, 29004 Malaga, Spain

9. Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y la Nutrición (CIBERObn), Instituto de Salud Carlos III, 28029 Madrid, Spain

Abstract

(1) Background: The assessment of muscle mass is crucial in the nutritional evaluation of patients with colorectal cancer (CRC), as decreased muscle mass is linked to increased complications and poorer prognosis. This study aims to evaluate the utility of AI-assisted L3 CT for assessing body composition and determining low muscle mass using both the Global Leadership Initiative on Malnutrition (GLIM) criteria for malnutrition and the European Working Group on Sarcopenia in Older People (EWGSOP2) criteria for sarcopenia in CRC patients prior to surgery. Additionally, we aim to establish cutoff points for muscle mass in men and women and propose their application in these diagnostic frameworks. (2) Methods: This retrospective observational study included CRC patients assessed by the Endocrinology and Nutrition services of the Regional University Hospitals of Malaga, Virgen de la Victoria of Malaga, and Vall d’Hebrón of Barcelona from October 2018 to July 2023. A morphofunctional assessment, including anthropometry, bioimpedance analysis (BIA), and handgrip strength, was conducted to apply the GLIM criteria for malnutrition and the EWGSOP2 criteria for sarcopenia. Body composition evaluation was performed through AI-assisted analysis of CT images at the L3 level. ROC analysis was used to determine the predictive capacity of variables derived from the CT analysis regarding the diagnosis of low muscle mass and to describe cutoff points. (3) Results: A total of 586 patients were enrolled, with a mean age of 68.4 ± 10.2 years. Using the GLIM criteria, 245 patients (41.8%) were diagnosed with malnutrition. Applying the EWGSOP2 criteria, 56 patients (9.6%) were diagnosed with sarcopenia. ROC curve analysis for the skeletal muscle index (SMI) showed a strong discriminative capacity of muscle area to detect low fat-free mass index (FFMI) (AUC = 0.82, 95% CI 0.77–0.87, p < 0.001). The identified SMI cutoff for diagnosing low FFMI was 32.75 cm2/m2 (Sn 77%, Sp 64.3%; AUC = 0.79, 95% CI 0.70–0.87, p < 0.001) in women, and 39.9 cm2/m2 (Sn 77%, Sp 72.7%; AUC = 0.85, 95% CI 0.80–0.90, p < 0.001) in men. Additionally, skeletal muscle area (SMA) showed good discriminative capacity for detecting low appendicular skeletal muscle mass (ASMM) (AUC = 0.71, 95% CI 0.65–0.76, p < 0.001). The identified SMA cutoff points for diagnosing low ASMM were 83.2 cm2 (Sn 76.7%, Sp 55.3%; AUC = 0.77, 95% CI 0.69–0.84, p < 0.001) in women and 112.6 cm2 (Sn 82.3%, Sp 58.6%; AUC = 0.79, 95% CI 0.74–0.85, p < 0.001) in men. (4) Conclusions: AI-assisted body composition assessment using CT is a valuable tool in the morphofunctional evaluation of patients with colorectal cancer prior to surgery. CT provides quantitative data on muscle mass for the application of the GLIM criteria for malnutrition and the EWGSOP2 criteria for sarcopenia, with specific cutoff points established for diagnostic use.

Funder

Persan Farma

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3