Facile Fabrication of PA66/GO/MWNTs-COOH Nanocomposites and Their Fibers

Author:

Gao Xuefeng,Yu Wenguang,Zhang Xianye,Zhang Jiao,Liu Haihui,Zhang Xingxiang

Abstract

Good dispersion and interfacial compatibility are the key issues to realize the full potential of the physical–mechanical properties of nanocarbon-materials reinforced composites. Styrene–maleic-anhydride-copolymer (SMA)-treated graphene oxide (GO), carboxylated multiwalled carbon nanotubes (MWNTs-COOH), and solid-state shear milling (S3M) were applied to further improve the physical–mechanical properties of the nanocomposite fibers. The results show that a mixture of GO/MWNTs-COOH exhibits good dispersion and interfacial compatibility in polyamide-66 (PA66) matrix. Consequently, the physical–mechanical properties of the fibers, which were spun from the nanocomposite of GO/MWNTs-COOH treated using SMA and S3M methods, show a significant enhancement compared to the untreated fibers as well as better crystallization and thermal properties. In particular, the tensile strength of the PA66/GO/MWNTs-COOH nanocomposite fibers with a loading of 0.3 wt % GO/MWNTs-COOH reaches a maximum (979 MPa), which is the highest among all of the reported literature values. Moreover, the fibers were fabricated by a facile process with efficiency, holding great potential for industrial applications.

Funder

New Materials Research Key Program of Tianjin

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Mechanics of Materials,Biomaterials,Civil and Structural Engineering,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3