Electrodeless Heart and Respiratory Rate Estimation during Sleep Using a Single Fabric Band and Event-Based Edge Processing

Author:

Jayarathna TitusORCID,Gargiulo Gaetano D.ORCID,Lui Gough Y.ORCID,Breen Paul P.

Abstract

Heart rate (HR) and respiratory rate (RR) are two vital parameters of the body medically used for diagnosing short/long-term illness. Out-of-the-body, non-skin-contact HR/RR measurement remains a challenge due to imprecise readings. “Invisible” wearables integrated into day-to-day garments have the potential to produce precise readings with a comfortable user experience. Sleep studies and patient monitoring benefit from “Invisibles” due to longer wearability without significant discomfort. This paper suggests a novel method to reduce the footprint of sleep monitoring devices. We use a single silver-coated nylon fabric band integrated into a substrate of a standard cotton/nylon garment as a resistive elastomer sensor to measure air and blood volume change across the chest. We introduce a novel event-based architecture to process data at the edge device and describe two algorithms to calculate real-time HR/RR on ARM Cortex-M3 and Cortex-M4F microcontrollers. RR estimations show a sensitivity of 99.03% and a precision of 99.03% for identifying individual respiratory peaks. The two algorithms used for HR calculation show a mean absolute error of 0.81 ± 0.97 and 0.86±0.61 beats/min compared with a gold standard ECG-based HR. The event-based algorithm converts the respiratory/pulse waveform into instantaneous events, therefore reducing the data size by 40–140 times and requiring 33% less power to process and transfer data. Furthermore, we show that events hold enough information to reconstruct the original waveform, retaining pulse and respiratory activity. We suggest fabric sensors and event-based algorithms would drastically reduce the device footprint and increase the performance for HR/RR estimations during sleep studies, providing a better user experience.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3