Thirst or Malnutrition: The Impacts of Invasive Insect Agrilus mali on the Physiological Status of Wild Apple Trees

Author:

Zhang Ping,Cui Zhijun,Xu HaoORCID,Ali AbidORCID,Zhang Xin,Liu Xiaoxian,Zhang Yuanming,Zhou Xiaobing,Lu Zhaozhi

Abstract

Malus sieversii (Ledeb.) M. Roem is a tertiary relict tree species and a rare and valuable resource for germplasm conservation. Since 1995, its wild forest has been severely destroyed by a devastating wood-boring beetle Agrilus mali Matsumura (Coleoptera: Buprestidae) in Xinjiang Uygur Autonomous Region, China. Where it invaded, this beetle infested more than 95% of the forests, and 80% of wild apple trees were reported dead in the hotspots. The physiological damage by A. mali infestation and their causality to tree death remain unclear. In this study, we attempted to explain the wild apple dieback from plant physiological perspectives, based on the hypothesis that the more damage M. sieversii suffered from the infestation of A. mali, the less water and fewer nutrients it could utilize. The study was conducted on trees with different extents of damage in wild apple forests over a large scale during 2016 and 2017. The stable carbon isotope ratio in leaves was analyzed to indicate tree water stress status. Total N, total P, total K, Ca2+ and Mg2+ were analyzed to reflect plant mineral nutrient status. The extent of damage was significantly associated with the leaf stable carbon isotope ratio in the drier year of 2016, but not significantly in 2017 with heavy rainfall in spring. The mineral nutrient contents of leaves were not significantly different among the four damage rankings in either year. The water stress experienced by M. sieversii was aggravated by the damage caused by A. mali, especially in a drought year, and indicates that the long-term water deficit caused by A. mali infestation may be the key factor leading to the decline of wild apple forests. The finding suggests the necessity of aerial irrigation for sustainable integrated pest management in wild apple trees.

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3