3D Characterization of Pore Structure and Pore Scale Seepage Simulation of Sandstone Based on Computational Tomography

Author:

Zhu Kaipeng12345,Li Kai123,Ji Yadong123,Li Xiaolong123,Liu Xuan123,Liu Kaide6,Chen Xuandong7ORCID

Affiliation:

1. CCTEG Xi’an Research Institute (Group) Co., Ltd., Xi’an 710077, China

2. State Key Laboratory of Coal Mine Disaster Prevention and Control, Xi’an 710077, China

3. Shaanxi Key Laboratory of Prevention and Control Technology for Coal Mine Water Hazard, Xi’an 710077, China

4. School of Mines, China University of Mining and Technology, Xuzhou 221116, China

5. Key Laboratory of Xinjiang Coal Resources Green Mining, Xinjiang Institute of Engineering, Ministry of Education, Urumqi 830023, China

6. Shaanxi Key Laboratory of Safety and Durability of Concrete Structures, Xijing University, Xi’an 710123, China

7. College of Civil and Architecture Engineering, Guilin University of Technology, Guilin 541004, China

Abstract

The microscopic pore structure of sandstone determines its macroscopic permeability. Based on computer tomography (CT) technology, CT scans were performed on three different types of sandstone pore structures, namely coarse sandstone, medium sandstone, and fine sandstone. And the three-dimensional microscopic structure of sandstone pores was reconstructed. Furthermore, based on the Navier–Stokes equations, the fluid flow process in the pore structure of sandstone was simulated, and the effective permeability of sandstone was obtained. By extracting the pore structure from sandstone CT images, the average porosity of coarse sandstone, medium sandstone, and fine sandstone was 16.43%, 12.03%, and 11.64%, respectively. And the porosity of unconnected pores is less than 0.5%. The porosity and permeability of coarse sandstone are higher than those of medium sandstone and fine sandstone with an average value of 1.7 D. The porosity of medium sandstone and fine sandstone is relatively similar. However, the average pore radius and pore throat radius of medium sandstone are larger than those of fine sandstone. More importantly, although the permeability and porosity of sandstone are generally linearly related, when the porosity is low, the data show a large dispersion, and auxiliary indicators such as pore structure characteristic parameters such as pore throat radius should be adopted to evaluate the permeability of sandstone. The flow trajectory of fluid in the pore structure of sandstone is revealed through the streamline of fluid in the pore structure, revealing the mechanism of fluid flow.

Funder

Shaanxi Provincial Natural Science Foundation

China Coal Science and Technology Innovation Fun

Publisher

MDPI AG

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3