Author:
Khan Shahbaz,Anwar Sumera,Yu Shaobo,Sun Min,Yang Zhenping,Gao Zhi-qiang
Abstract
Crop yield improvement is necessary to keep pace with increasing demand for food. Due to climatic variability, the incidence of drought stress at crop growth stages is becoming a major hindering factor to yield improvement. New techniques are required to increase drought tolerance along with improved yield. Genetic modification for increasing drought tolerance is highly desirable, and genetic engineering for drought tolerance requires the expression of certain stress-related genes. Genes have been identified which confer drought tolerance and improve plant growth and survival in transgenic wheat. However, less research has been conducted for the development of transgenic wheat as compared to rice, maize, and other staple food. Furthermore, enhanced tolerance to drought without any yield penalty is a major task of genetic engineering. In this review, we have focused on the progress in the development of transgenic wheat cultivars for improving drought tolerance and discussed the physiological mechanisms and testing of their tolerance in response to inserted genes under control or field conditions.
Funder
Crop Ecology and Dry Cultivation Physiology Key Laboratory of Shanxi Province
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
72 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献