Selenium and Glutathione-Depleted Rats as a Sensitive Animal Model to Predict Drug-Induced Liver Injury in Humans

Author:

Goda Keisuke,Muta Kyotaka,Yasui Yuzo,Oshida Shin-ichi,Kitatani Kanae,Takekoshi Susumu

Abstract

Drug-induced liver injury (DILI) is one of the most serious and frequent drug-related adverse events in humans. Selenium (Se) and glutathione (GSH) have a crucial role for the hepatoprotective effect against reactive metabolites or oxidative damage leading to DILI. The hepatoprotective capacity related to Se and GSH in rodents is considered to be superior compared to the capacity in humans. Therefore, we hypothesize that Se/GSH-depleted rats could be a sensitive animal model to predict DILI in humans. In this study, Se-deficiency is induced by feeding a Se-deficient diet and GSH-deficiency is induced by l-buthionine-S,R-sulfoxinine treatment via drinking water. The usefulness of this animal model is validated using flutamide, which is known to cause DILI in humans but not in intact rats. In the Se/GSH-depleted rats from the present study, decreases in glutathione peroxidase-1 protein expression and GSH levels and an increase in malondialdehyde levels in the liver are observed without any increase in plasma liver function parameters. Five-day repeated dosing of flutamide at 150 mg/kg causes hepatotoxicity in the Se/GSH-depleted rats but not in normal rats. In conclusion, Se/GSH-depleted rats are the most sensitive for detecting flutamide-induced hepatotoxicity in all the reported animal models.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference45 articles.

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3