Nanostructured Ni Based Anode and Cathode for Alkaline Water Electrolyzers

Author:

Ganci FabrizioORCID,Baguet Tracy,Aiello Giuseppe,Cusumano Valentino,Mandin Philippe,Sunseri Carmelo,Inguanta RosalindaORCID

Abstract

Owing to the progressive abandoning of the fossil fuels and the increase of atmospheric CO2 concentration, the use of renewable energies is strongly encouraged. The hydrogen economy provides a very interesting scenario. In fact, hydrogen is a valuable energy carrier and can act as a storage medium as well to balance the discontinuity of the renewable sources. In order to exploit the potential of hydrogen it must be made available in adequate quantities and at an affordable price. Both goals can be potentially achieved through the electrochemical water splitting, which is an environmentally friendly process as well as the electrons and water are the only reagents. However, these devices still require a lot of research to reduce costs and increase efficiency. An approach to improve their performance is based on nanostructured electrodes characterized by high electrocatalytic activity. In this work, we show that by using template electrosynthesis it is possible to fabricate Ni nanowires featuring a very high surface area. In particular, we found that water-alkaline electrolyzers with Ni nanowires electrodes covered by different electrocatalyst have good and stable performance at room temperature as well. Besides, the results concern nickel-cobalt nanowires electrodes for both hydrogen and oxygen evolution reaction will be presented and discussed. Finally, preliminary tests concerning the use of Ni foam differently functionalized will be shown. For each electrode, electrochemical and electrocatalytic tests aimed to establishing the performance of the electrolyzers were carried out. Long term amperostatic test carried out in aqueous solution of KOH will be reported as well.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference83 articles.

1. Global Energy Demand Rose by 2.3% in 2018, Its Fastest Pace in the Last Decadehttps://www.iea.org/newsroom/news/2019/march/global-energy-demand-rose-by-23-in-2018-its-fastest-pace-in-the-last-decade.html

2. https://www.bcg.com/it-it/industries/energy-environment/publications.aspx

3. Advanced Technology Paths to Global Climate Stability: Energy for a Greenhouse Planet

4. The effectiveness of energy service demand reduction: A scenario analysis of global climate change mitigation

5. Role of renewable energy sources in environmental protection: A review

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3