Wind Farm NWP Data Preprocessing Method Based on t-SNE

Author:

Gu Jiu,Wang Yining,Xie Da,Zhang Yu

Abstract

The operation prediction of wind farms will be accompanied by the need for massive data processing, especially the preprocessing of wind farm meteorological data or numerical weather prediction (NWP). Because NWP data are strongly correlated with wind farm operation, proper processing of NWP data could not only reduce data volume but also improve the correlations of wind farm operation predictions. For this purpose, this paper proposes a data preprocessing algorithm based on t-distributed stochastic neighbor embedding (t-SNE). Firstly, the data collected were normalized to eliminate the influence caused by different dimensions. The t-SNE algorithm is then used to reduce the dimensionality of the NWP data related to wind farm operation. Finally, the wind farm data visualization platform is established. In this paper, 22 index variables in NWP data were taken as objects. The t-SNE method was used to preprocess the NWP historical data of a wind farm, and the results were compared with the results of the principal component analysis (PCA) algorithm. It outperformed PCA in error precision; in addition, t-SNE dimension reduction preprocessing also had a visual effect, which could be applied to big data visualization platforms. A long short-term memory network (LSTM) was used to predict the operation of the wind farm by combining the preprocessed NWP data and the operation data. The simulation results proved that the effect of the preprocessed NWP data based on t-SNE on the wind power prediction was significantly improved.

Funder

National Natural Science Foundation of China

State Grid Corporation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3