A Novel Method for Comprehensive Quality and Reliability Optimization of High-Power DC Actuators for Renewable Energy Systems

Author:

Deng Jie,Chen HaoORCID,Ye Xuerong,Liang Huimin,Zhaia Guofu

Abstract

To better qualify various uncertainties in design and manufacturing, as well as to understand the time-varying degradation process, a novel method of quality and reliable design and optimization for high-power DC actuators was developed in this study that considered relevant uncertainties in design, manufacturing parameters, and the degradation process. Orthogonal transformation was used to normalize heterogeneous uncertainties and the results were quantitatively described by the hyperellipsoid set model. On the basis of the uncertainty quantitative relationship, a fast substitution model was developed for high-power DC actuators with permanent magnet output characteristics of strong non-linearity and insufficient accuracy. The response surface method was used to derive the basis function, and the error between the practical measured values and the calculation values was modified by the radial basis function model. Afterwards, a life cycle global sensitivity analysis method was put forward to determine the design parameters when parameter degradation existed during the life cycle of high-power DC actuators. Then, an optimization model was established considering parameter uncertainties and reliability constraints, and the particle swarm algorithm was used to obtain the solution. Finally, the effectiveness of the proposed method was verified by a case study of high-power DC actuators in electric vehicles.

Funder

Harbin Institute of Technology

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3