Contribution of Minerals in Different Occurrence Forms to PM10 Emissions during the Combustion of Pulverized Zhundong Coal

Author:

Zhao Laifu,Du Qian,Gao Jianmin,Wu Shaohua

Abstract

The comprehensive and quantitative assessment of the contribution of minerals with different occurrence forms to particulate matter with an aerodynamic diameter of less than 10 μm (PM10) emitted from the combustion of Zhundong coal is of great significance for its clean utilization and for the development of particulate matter formation mechanisms. Samples with simplified occurrence forms of inorganic species were prepared by water-, salt-, and acid-washing of Zhundong coal. The samples were combusted in a drop-tube furnace under 20 vol % oxygen at 1250 °C, and the emitted PM10 was collected. The effects of the minerals in different forms on the PM10 emissions were analyzed by comparing the mass concentration distributions, yields, and elemental compositions of PM10. The results showed that water-soluble, ion-exchangeable, acid-soluble, and acid-insoluble minerals contributed 8.3%, 37.8%, 29.7%, and 24.2% of the PM10 emissions, respectively. The distributions of the Na, Mg, Ca, and Fe contents in PM10 were bimodal, as follows: 63.6% of Na and 54.5% of Fe were deported to the ultrafine mode PM, while 63.6% of Mg and 86.6% of Ca were deported to the coarse mode PM. The distributions of the Si and Al contents were unimodal, namely: 92.9% of Si and 90.5% of Al were deported to the coarse mode PM. Water-soluble Na; ion-exchanged Mg, Ca, and Fe; and acid-insoluble Si and Al played decisive roles in the distribution of minerals in PM10.

Funder

the National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3