Estimation of Wave-Breaking Index by Learning Nonlinear Relation Using Multilayer Neural Network

Author:

Yun MiyoungORCID,Kim Jinah,Do KideokORCID

Abstract

Estimating wave-breaking indexes such as wave height and water depth is essential to understanding the location and scale of the breaking wave. Therefore, numerous wave-flume laboratory experiments have been conducted to develop empirical wave-breaking formulas. However, the nonlinearity between the parameters has not been fully incorporated into the empirical equations. Thus, this study proposes a multilayer neural network utilizing the nonlinear activation function and backpropagation to extract nonlinear relationships. Existing laboratory experiment data for the monochromatic regular wave are used to train the proposed network. Specifically, the bottom slope, deep-water wave height and wave period are plugged in as the input values that simultaneously estimate the breaking-wave height and wave-breaking location. Typical empirical equations employ deep-water wave height and length as input variables to predict the breaking-wave height and water depth. A newly proposed model directly utilizes breaking-wave height and water depth without nondimensionalization. Thus, the applicability can be significantly improved. The estimated wave-breaking index is statistically verified using the bias, root-mean-square errors, and Pearson correlation coefficient. The performance of the proposed model is better than existing breaking-wave-index formulas as well as having robust applicability to laboratory experiment conditions, such as wave condition, bottom slope, and experimental scale.

Funder

National Research Foundation of Korea; Ministry of Oceans and Fisheries

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Reference59 articles.

1. Introduction to Coastal Processes and Geomorphology;Davidson-Arnott,2019

2. Artificial neural networks applied to port operability assessment

3. On the theory of oscillatory waves;Stokes;Trans. Camb. Philos. Soc.,1847

4. Wave breaking in shallow water;Galvin,1972

5. On the highest water waves of permanent type;Yamada;Bull. Disaster Prev. Res. Inst.,1968

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3