Strahler Ordering Analyses on Branching Coral Canopies: Stylophora pistillata as a Case Study

Author:

Shmuel Yaniv,Ziv Yaron,Rinkevich BaruchORCID

Abstract

The three-dimensional structural complexities generated by living sessile organisms, such as trees and branching corals, embrace distinct communities of dwelling organisms, many of which are adapted to specific niches within the structure. Thus, characterizing the build-up rules and the canopy compartments may clarify small-scale biodiversity patterns and rules for canopy constituents. While biodiversity within tree canopies is usually typified by the vertical axis that is delineated by its main compartments (understory, trunk, crown), traditional studies of coral canopy dwelling species are evaluated only by viewing the whole coral head as a single homogeneous geometric structure. Here, we employ the Strahler number of a mathematical tree for the numerical measurements of the coral’s canopy complexity. We use the branching Indo-Pacific coral species Stylophora pistillata as a model case, revealing five compartments in the whole coral canopy volume (Understory, Base, Middle, Up, and Bifurcation nods). Then, the coral’s dwellers’ diel distribution patterns were quantified and analyzed. We observed 114 natal colonies, containing 32 dwelling species (11 sessile), totaling 1019 individuals during day observations, and 1359 at night (1–41 individuals/colony). Biodiversity and abundance associated with Strahler numbers, diel richness, abundance, and patterns for compartmental distributions differed significantly between day/night. These results demonstrate that the coral-canopy Strahler number is an applicable new tool for assessing canopy landscapes and canopy associated species biodiversity, including the canopy-compartmental utilization by mobile organisms during day/night and young/adult behaviors.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3