Abstract
The autonomous underwater helicopter, shortly referred to as AUH, is a newly developed underwater platform with a unique disc shape. An autonomous underwater helicopter with a suboptimal disc shape is presented in this paper. It adopts a multirotor configuration and stable fins to overcome the shape shortcoming for motion stabilization. Its motion analysis and mathematical model have been introduced accordingly. Computational Fluid Dynamics (CFD) simulation is carried out to evaluate fins’ hydrodynamic performance. Proportional integral derivative (PID) and sliding mode fuzzy (SMF) control are adopted for controller design. Finally, the controller is applied on this AUH and extensively tested in various simulations and experiments, and the results illustrate the high stabilization and robustness of the controller and the hovering stability and manoeuvrability of AUH.
Funder
the National Key R&D Program of China
Subject
Ocean Engineering,Water Science and Technology,Civil and Structural Engineering
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献