Machine Learning-Based Real-Time Prediction of Formation Lithology and Tops Using Drilling Parameters with a Web App Integration

Author:

Khalifa Houdaifa1ORCID,Tomomewo Olusegun Stanley2ORCID,Ndulue Uchenna Frank3,Berrehal Badr Eddine4

Affiliation:

1. Department of Petroleum Engineering, University of North Dakota, Grand Forks, ND 58202, USA

2. College of Engineering and Mines Energy Studies, University of North Dakota, Grand Forks, ND 58202, USA

3. H-PTP Energy Services Limited, Lagos 106104, Nigeria

4. SLB OFS Base, Doha P.O. Box 8746, Qatar

Abstract

The accurate prediction of underground formation lithology class and tops is a critical challenge in the oil industry. This paper presents a machine-learning (ML) approach to predict lithology from drilling data, offering real-time litho-facies identification. The ML model, applied via the web app “GeoVision”, achieves remarkable performance during its training phase with a mean accuracy of 95% and a precision of 98%. The model successfully predicts claystone, marl, and sandstone classes with high precision scores. Testing on new data yields an overall accuracy of 95%, providing valuable insights and setting a benchmark for future efforts. To address the limitations of current methodologies, such as time lags and lack of real-time data, we utilize drilling data as a unique endeavor to predict lithology. Our approach integrates nine drilling parameters, going beyond the narrow focus on the rate of penetration (ROP) often seen in previous research. The model was trained and evaluated using the open Volve field dataset, and careful data preprocessing was performed to reduce features, balance the sample distribution, and ensure an unbiased dataset. The innovative methodology demonstrates exceptional performance and offers substantial advantages for real-time geosteering. The accessibility of our models is enhanced through the user-friendly web app “GeoVision”, enabling effective utilization by drilling engineers and marking a significant advancement in the field.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3