PV Monitoring System for a Water Pumping Scheme with a Lithium-Ion Battery Using Free Open-Source Software and IoT Technologies

Author:

Gimeno-Sales Francisco José,Orts-Grau SalvadorORCID,Escribá-Aparisi Alejandro,González-Altozano PabloORCID,Balbastre-Peralta IbánORCID,Martínez-Márquez Camilo ItzameORCID,Gasque MaríaORCID,Seguí-Chilet SalvadorORCID

Abstract

The development of photovoltaic (PV) technology is now a reality. The inclusion of lithium-ion batteries in grid-connected PV systems is growing, and the sharp drop in prices for these batteries will enable their use in applications such as PV water pumping schemes (PVWPS). A technical solution for the monitoring and tracking of PV systems is shown in this work, and a novel quasi-real-time monitoring system for a PVWPS with a Li-ion battery is proposed in which open-source Internet of Things (IoT) tools are used. The purpose of the monitoring system is to provide a useful tool for the operation, management, and development of these facilities. The experimental facility used to test the monitoring system includes a 2.4 kWpk photovoltaic field, a 3.6 kVA hybrid inverter, a 3.3 kWh/3 kW lithium-ion battery, a 2.2 kVA variable speed driver, and a 1.5 kW submersible pump. To address this study, data acquisition is performed using commercial hardware solutions that communicate using a Modbus-RTU protocol over an RS485 bus and open software. A Raspberry Pi is used in the data gateway stage, including a PM2 free open-source process manager to increase the robustness and reliability of the monitoring system. Data storage is performed in a server using InfluxDB for open-source database storage and Grafana as open-source data visualization software. Data processing is complemented with a configurable data exporter program that enables users to select and copy the data stored in InfluxDB. Excel or .csv files can be created that include the desired variables with a defined time interval and with the desired data granularity. Finally, the initial results of the monitoring system are presented, and the possible uses of the acquired data and potential users of the system are identified and described.

Funder

Universitat Politècnica de València

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3