Abstract
In modular construction—a type of industrialized construction—production planning is very important, as it is closely related to the project’s duration, quality, and sustainability. The constraints (production area, delivery due date) often differ for each project, yet production planning in modular construction has failed to change with the project characteristics. As a result, bottlenecks and construction delays are common problems seen in modular construction, which, in turn, decreases the production ratio, causing the production to be inefficient. To this end, this paper applied a prefabricated component in the modular production process. The paper developed a process analysis model considering constraint factors (production period, production area) to derive the optimal configuration of the prefabricated components in various alternatives. The developed analysis model was then applied to a virtual case to analyze the productivity improvement and select the optimal process. The optimal production process was derived by simulating the possible production planning within a limited production area and production timeline. The result of a simulation indicates that the production period has been halved by optimizing the process. Furthermore, by applying prefabricated components, the production efficiency was further increased because the existing linear production process’s bottleneck disappeared. The model is deemed to have the potential to optimize various production methods across production facilities or modular factories that simultaneously perform multiple projects.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献