Sustainability of Vibration Mitigation Methods Using Meta-Materials/Structures along Railway Corridors Exposed to Adverse Weather Conditions

Author:

Kaewunruen SakdiratORCID,Qin Zhangjun

Abstract

Noises and vibrations caused by operating transport systems can seriously affect people’s health and environmental ecosystems. Railway-induced vibrations in urban settings can cause disturbances and damages to surrounding buildings, infrastructures and residents. Over many decades, a number of mitigation methods have been proposed to attenuate vibrations at the source, in the transmission path, or at the receiver. In fact, low-frequency or ground-borne vibration is turned out to be more difficult to be mitigated at source, whilst some attenuation measures in propagation path can be applicable. To broaden the mitigating range at the low-frequency band, the applications of meta-materials/structures have been established. In railway systems, periodic structures or resonators can be installed near the protected buildings to isolate the vibrations. Despite a large number of proposed attenuation methods, the sustainability of those methods has not been determined. Based on rational engineering assumptions, the discounted cash flows in construction and maintenance processes are analysed in this study to evaluate lifecycle costs and the quantity of materials and fuels, as well as the amount of carbon emissions. This study is the world’s first to identify the efficacy and sustainability of some transmission path attenuation methods in both normal and adverse weather conditions. It reveals that geofoam trenches and wave impeding blocks are the most suitable methods. Although metamaterial applications can significantly mitigate a wider range of lower frequency vibrations, the total cost and carbon emissions are relatively high. It is necessary to significantly modify design parameters in order to enable low-cost and low-carbon meta-materials/structures in reality.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3