Recycling Untreated Coal Bottom Ash with Added Value for Mitigating Alkali–Silica Reaction in Concrete: A Sustainable Approach

Author:

Abbas Safeer,Arshad Uzair,Abbass WasimORCID,Nehdi Moncef L.ORCID,Ahmed AliORCID

Abstract

Each year, about 730 million tons of bottom ash is generated in coal fired power plants worldwide. This by-product can be used as partial replacement for Portland cement, favoring resource conservation and sustainability. Substantial research has explored treated and processed coal bottom ash (CBA) for possible use in the construction industry. The present research explores using local untreated and raw CBA in mitigating the alkali–silica reaction (ASR) of reactive aggregates in concrete. Mortar bar specimens incorporating various proportions of untreated CBA were tested in accordance with ASTM C1260 up to 150 days. Strength activity index (SAI) and thermal analysis were used to assess the pozzolanic activity of CBA. Specimens incorporating 20% CBA achieved SAI greater than 75%, indicating pozzolanic activity. Mixtures incorporating CBA had decreased ASR expansion. Incorporating 20% CBA in mixtures yielded 28-day ASR expansion of less than the ASTM C1260 limit value of 0.20%. Scanning electron microscopy depicted ASR induced microcracks in control specimens, while specimens incorporating CBA exhibited no microcracking. Moreover, low calcium-to-silica ratio and reduced alkali content were observed in specimens incorporating CBA owing to alkali dilution and absorption, consequently decreasing ASR expansion. The toxicity characteristics of CBA indicated the presence of heavy metals below the US-EPA limits. Therefore, using local untreated CBA in concrete as partial replacement for Portland cement can be a non-hazardous alternative for reducing the environmental overburden of cement production and CBA disposal, with the added benefit of mitigating ASR expansion and its associated costly damage, leading to sustainable infrastructure.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3