Regional Security Assessment of Integrated Energy Systems with Renewables in China: A Grid-Connected Perspective

Author:

Zhao Zhenyu,Yang Huijia

Abstract

Stable and reliable integrated energy systems are one of the major issues related to sustainable regional and national energy development. Because most existing studies are conducted on whole countries, few address the effects of regional interaction and renewable energy. Therefore, a natural disaster risk assessment model (NDRAM) combined with spatial models is used as a general systematic tool to assess and resolve regional energy security, based on a framework of resources, generation, transmission, marketing and consumption, with 17 metrics. In particular, energy systems were treated as organic connected-units and their security status was regarded as a combined result of potential hazard and system vulnerability. The proposed method was applied to evaluate and classify the security situation of 31 Chinese provinces in 2016. The results showed that transmission had the most significant impact among five major risk sources. The closer grid connections have a stronger ability to deal with risks among regions, where renewables consumption could be better stimulated cross-regionally. In terms of a regional perspective, there is still a gap among different regions, and eastern China presented higher energy risk status. The most energy-hazard provinces are mainly in the east provinces with well-developed levels in Beijing, Tianjin and Shanghai. The least energy-vulnerable provinces are mainly in the abundant natural resources regions such as Inner Mongolia, Sichuan and Xinjiang. The NDRAM-based general model provides a systematic tool for quantitative assessment of regional energy security with a full accounting of regional interaction and renewable energy issues, which may help to develop clean energy, optimize system infrastructure and improve scientific management.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3