Bayesian-Based Hybrid Method for Rapid Optimization of NV Center Sensors

Author:

Tian Jiazhao1,Said Ressa S.2ORCID,Jelezko Fedor2,Cai Jianming3,Xiao Liantuan1

Affiliation:

1. School of Physics, Taiyuan University of Technology, Taiyuan 030024, China

2. Institute for Quantum Optics and Center for Integrated Quantum Science and Technology, Ulm University, 89081 Ulm, Germany

3. School of Physics, International Joint Laboratory on Quantum Sensing and Quantum Metrology, Huazhong University of Science and Technology, Wuhan 430074, China

Abstract

NV centers are among the most promising platforms in the field of quantum sensing. Magnetometry based on NV centers, especially, has achieved concrete development in areas of biomedicine and medical diagnostics. Improving the sensitivity of NV center sensors under wide inhomogeneous broadening and fieldamplitude drift is a crucial issue of continuous concern that relies on the coherent control of NV centers with high average fidelity. Quantum optimal control (QOC) methods provide access to this target; nevertheless, the high time consumption of current methods due to the large number of needful sample points as well as the complexity of the parameter space has hindered their usability. In this paper, we propose the Bayesian estimation phase-modulated (B-PM) method to tackle this problem. In the case of the state transforming of an NV center ensemble, the B-PM method reduced the time consumption by more than 90% compared with the conventional standard Fourier basis (SFB) method while increasing the average fidelity from 0.894 to 0.905. In the AC magnetometry scenario, the optimized control pulse obtained with the B-PM method achieved an eight-fold extension of coherence time T2 compared with the rectangular π pulse. Similar application can be made in other sensing situations. As a general algorithm, the B-PM method can be further extended to the open- and closed-loop optimization of complex systems based on a variety of quantum platforms.

Funder

Scientific Research Foundation of Taiyuan Technology

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3