Abstract
High-precision ultrasound imaging of void defects is critical for the performance and safety assessment of ballastless track structures. The sound propagation velocity of each layer in the ballastless track structure is quite different. However, the traditional concrete Synthetic Aperture Focusing Technique (SAFT) ultrasound imaging method is based on the assumption that the concrete has a single constant shear wave velocity. Thus, it is not a suitable method for the ultrasonic imaging of multilayer structures. In this paper, a Multilayer SAFT high-precision ultrasound imaging method is proposed. It is based on the ray-tracing technique and uses the Fermat principle to find the refraction point that minimizes the delay of the acoustic wave propagation path at the interface of the discrete layers. Then, the acoustic wave propagation path is segmented by the position of the refraction point, and the propagation delay of the ultrasonic wave is obtained segment by segment. Thus, the propagation delay of the ultrasonic wave is obtained one by one, so that the propagation delay of the ultrasonic wave in the multilayer structure can be accurately obtained. Finally, the focused image is obtained according to the SAFT imaging algorithm. The finite element simulation and experimental results show that the Multilayer SAFT imaging method can accurately track the propagation path of the ultrasonic wave in ballastless track structures, as well as accurately calculate the propagation delay of the ultrasonic wave and the lengths of void defects. The high accuracy of the Multilayer SAFT imaging represents a significant improvement compared to traditional SAFT imaging.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Reference28 articles.
1. China Railway (CR): Chinese High-Speed Rail Operating Mileage Reached More Than 29,000 Kilometers [EB/OL]http://news.china.com.cn/txt/2019-01/02/content_74333468.htm
2. Research and application of general constructions technologies for high-speed railway in china;Zhao;J. China Railw. Soc.,2019
3. Numerical and Experimental Research on Identifying a Delamination in Ballastless Slab Track
4. Damage detection of ballastless railway tracks by the impact-echo method
5. Ultrasound frequency analysis for identification of aggregates and cement paste in concrete
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献