Design of a 900 MHz Dual-Mode SWIPT for Low-Power IoT Devices

Author:

Abbasizadeh HamedORCID,Kim Sang Yun,Samadpoor Rikan Behnam,Hejazi Arash,Khan DanialORCID,Pu Young Gun,Hwang Keum CheolORCID,Yang Youngoo,Kim Dong InORCID,Lee Kang-Yoon

Abstract

This paper presents a duty cycle-based, dual-mode simultaneous wireless information and power transceiver (SWIPT) for Internet of Things (IoT) devices in which a sensor node monitors the received power and adaptively controls the single-tone or multitone communication mode. An adaptive power-splitting (PS) ratio control scheme distributes the received radio frequency (RF) energy between the energy harvesting (EH) path and the information decoding (ID) path. The proposed SWIPT enables the self-powering of an ID transceiver above 20 dBm input power, leading to a battery-free network. The optimized PS ratio of 0.44 enables it to provide sufficient harvested energy for self-powering and energy-neutral operation of the ID transceiver. The ID transceiver can demodulate the amplitude-shift keying (ASK) and the binary phase-shift keying (BPSK) signals. Moreover, for low-input power level, a peak-to-average power ratio (PAPR) scheme based on multitone is also proposed for demodulation of the information-carrying RF signals. Due to the limited power, information is transmitted in uplink by backscatter modulation instead of RF signaling. To validate our proposed SWIPT architecture, a SWIPT printed circuit board (PCB) was designed with a multitone SWIPT board at 900 MHz. The demodulation of multitone by PAPR was verified separately on the PCB. Results showed the measured sensitivity of the SWIPT to be −7 dBm, and the measured peak power efficiency of the RF energy harvester was 69% at 20 dBm input power level. The power consumption of the injection-locked oscillator (ILO)-based phase detection path was 13.6 mW, and it could be supplied from the EH path when the input power level was high. The ID path could demodulate 4-ASK- and BPSK-modulated signals at the same time, thus receiving 3 bits from the demodulation process. Maximum data rate of 4 Mbps was achieved in the measurement.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3