Abstract
This paper presents a duty cycle-based, dual-mode simultaneous wireless information and power transceiver (SWIPT) for Internet of Things (IoT) devices in which a sensor node monitors the received power and adaptively controls the single-tone or multitone communication mode. An adaptive power-splitting (PS) ratio control scheme distributes the received radio frequency (RF) energy between the energy harvesting (EH) path and the information decoding (ID) path. The proposed SWIPT enables the self-powering of an ID transceiver above 20 dBm input power, leading to a battery-free network. The optimized PS ratio of 0.44 enables it to provide sufficient harvested energy for self-powering and energy-neutral operation of the ID transceiver. The ID transceiver can demodulate the amplitude-shift keying (ASK) and the binary phase-shift keying (BPSK) signals. Moreover, for low-input power level, a peak-to-average power ratio (PAPR) scheme based on multitone is also proposed for demodulation of the information-carrying RF signals. Due to the limited power, information is transmitted in uplink by backscatter modulation instead of RF signaling. To validate our proposed SWIPT architecture, a SWIPT printed circuit board (PCB) was designed with a multitone SWIPT board at 900 MHz. The demodulation of multitone by PAPR was verified separately on the PCB. Results showed the measured sensitivity of the SWIPT to be −7 dBm, and the measured peak power efficiency of the RF energy harvester was 69% at 20 dBm input power level. The power consumption of the injection-locked oscillator (ILO)-based phase detection path was 13.6 mW, and it could be supplied from the EH path when the input power level was high. The ID path could demodulate 4-ASK- and BPSK-modulated signals at the same time, thus receiving 3 bits from the demodulation process. Maximum data rate of 4 Mbps was achieved in the measurement.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献