Pulsed Thermal Method for Monitoring Cell Proliferation in Real-Time

Author:

Bormans SeppeORCID,Oudebrouckx GillesORCID,Vandormael Patrick,Vandenryt ThijsORCID,Wagner PatrickORCID,Somers VeerleORCID,Thoelen RonaldORCID

Abstract

The study of cell proliferation is of great importance for medical and biological research, as well as for industrial applications. To render the proliferation process accurately over time, real-time cell proliferation assay methods are required. This work presents a novel real-time and label-free approach for monitoring cell proliferation by continuously measuring changes in thermal properties that occur at the sensor interface during the process. The sensor consists of a single planar resistive structure deposited on a thin foil substrate, integrated at the bottom of a cell culture reservoir. During measurement, the structure is excited with square wave current pulses. Meanwhile, the temperature-induced voltage change measured over the structure is used to derive variations in the number of cells at the interface. This principle is demonstrated first by performing cell sedimentation measurements to quantify the presence of cells at the sensor interface in the absence of cell growth. Later, cell proliferation experiments were performed, whereby parameters such as the available nutrient content and the cell starting concentration were modified. Results from these experiments show that the thermal-based sensor is able to accurately measure variations in the number of cells at the interface. Moreover, the influence of the modified parameters could be observed in the obtained proliferation curves. These findings highlight the potential for the presented thermal method to be incorporated in a standardized well plate format for high-throughput monitoring of cell proliferation.

Funder

Interreg VA Grensregio Vlaanderen - Nederland

Fonds Wetenschappelijk Onderzoek

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3