Model Study of Mechanicochemical Degradation in a Planetary Ball Mill

Author:

Zhang Xiaohui,Liu Xitao,Zhao Jianguo,Sun Wenjun,Zhang Yuanna,Qiao Jun,Xing Guoqiang,Wang XiaoshuORCID

Abstract

The process of ball milling and the materials that compose planetary ball mills are highly complex, and the existing research on the change in ball-milling energy is not mature. The theoretical model of a ball mill was established for the first time to simulate the motion, collision process, energy transfer, and temperature change of small balls during the ball-milling process. Furthermore, by comparing the information with the experimental data for a ball mill, the motion trajectory of the grinding ball, and the energy transfer between the balls and materials were studied, and the micro process during milling was discussed. This study provides a certain theoretical basis for the follow-up engineering application.

Funder

Engineering Research Center of Coal-based Ecological Carbon Sequestration Technology of the Ministry of Education

Scientific and Technical Innovation Council of Shenzhen

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference26 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3