Temporal and Spatial Variation of Vegetation in Net Primary Productivity of the Shendong Coal Mining Area, Inner Mongolia Autonomous Region

Author:

Ke JiaORCID,Zhou DandanORCID,Hai Chunxing,Yu Yanhua,Jun Hao,Li Bingzi

Abstract

Coal mining can cause significant local environmental damage while driving the regional economy of an area. The key index of net primary productivity (NPP) measures the amount of energy made available in an ecosystem and serves as a useful metric for understanding vegetation restoration in mining areas. This study used a CASA model to estimate the vegetation NPP of the Ordos area of the Shendong coal fields from 2000 to 2019. Model output, human factors, and regional meteorological data were subjected to trend analysis, significance testing, partial correlation analysis, and residual analysis. The NPP data generated by a CASA model inversion approximated measured data to a reasonable degree. The average annual NPP of the vegetation in the study area from 2000 to 2019 was 44.51 g C/m2 a. In general, NPP showed a fluctuating upward trend, with slower increases before 2011 and more rapid increases after 2011. The trend exhibited considerable spatial heterogeneity. Areas with increasing NPP accounted for 21.54% of the study area and occurred mainly in the Dongsheng District, the Kangbashi District, and areas bordering the Ejin Horo Banner. Analysis detected consistent spatial variation between NPP and each factor in the study area. NPP is positively correlated with precipitation and human activities and negatively correlated with air temperature. The change in vegetation cover depended on both human activity and meteorological conditions. In terms of the strength of influence on vegetation NPP, human activity exceeded climate, followed by temperature and precipitation. Although the NPP of vegetation in the region directly affected by coal mining shows a trend of improvement, it is still lower than that in the natural growing region. In the next step, the ecological restoration of vegetation should be further strengthened to achieve regional ecological balance.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3