Abstract
The greatest warm body in the world exists in the tropical oceans, which stimulates deep convection, resulting in abundant water vapor and precipitation in the tropical atmosphere. Using multiple SST datasets and related precipitation and atmospheric parameter data, this study examines multi-scale variabilities of the Indo-Pacific warm pool (IPWP) as well as the associated rain pool (IPRP). The results show that the IPWP and IPRP are spatially analogous and have significant increasing trends of intensity and coverage. Seasonal variations of the IPWP and IPRP are the strongest and almost coincident with each other. Our results also confirm previous findings that the most important interannual variations of the IPWP and IPRP are associated with various types of ENSO. The composite analysis reveals that the IPWP’s SST structure is linked to the ENSO-induced trade wind anomaly and that SST structural changes cause changes in the position and intensity of the ascending branch of the Walker circulation, which in turn drives changes in the position and intensity of the IPRP.
Funder
National Natural Science Foundation of China
National Key Research and Development Program of China
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献