Comprehensive Utilization of Mineral Resources: Optimal Blending of Polymetallic Ore Using an Improved NSGA-III Algorithm

Author:

Chen Lu,Gu Qinghua,Wang Rui,Feng Zhidong,Zhang Chao

Abstract

A serious problem faced by the metal mineral mining industry is the challenge to the sustainable development of resource mining due to the continuous decline of ore geological grade. In the case of producing concentrates of the same quality, compared with using only high-grade raw ore, ore blending is a way to slow down the decline of ore geological grade by combining high- and low-grade raw ore. There are many ore blending models considering cost minimization or profit maximization as the target value, ignoring the fact that ore blending is intended to obtain a homogenized product. Moreover, the ore blending model cannot be solved by traditional operational research methods when blended grade stability of multiple elements is considered in the ore blending program. In this paper, a multi-objective ore blending optimization model is constructed for the comprehensive utilization of associated resources in ores. It minimizes the deviation of the grade of each metallic element in the blended associated ore from the beneficiation grade and the percentage of different types of rocks at the unloading point. To solve this multi-objective optimization model, an intelligent optimization method is proposed that is an improved multi-objective optimization algorithm based on the Non-dominated Sorting Genetic Algorithm III (NSGA-III). The case study shows that the proposed model and algorithm can effectively solve the mixing problem of polymetallic ores and obtain a satisfactory ore blending solution.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3