Design of a Customizable Test Bench of an Electric Vehicle Powertrain for Learning Purposes Using Model-Based System Engineering

Author:

El Hadraoui HichamORCID,Zegrari Mourad,Hammouch Fatima-Ezzahra,Guennouni NasrORCID,Laayati OussamaORCID,Chebak Ahmed

Abstract

Nowadays, electric vehicles attract significant attention because of the increasingly stringent exhaust emission policies all over the world. Moreover, with the fast expansion of the sustainable economy, the demand for electric vehicles is expanding. In the recent age, maintenance has seriously hampered the marketing and use of electric automobiles. As a result, the technique for maintaining electric vehicles is regarded as vital since it directly affects the security and availability for the end user and the passengers. Another key aspect of electric mobility is the integration of artificial intelligence in control, diagnostics, and prognostics. Meanwhile, a lot of research efforts are still devoted to developing and innovating electric traction systems, especially for diagnostic and prognostic purposes. Furthermore, topics covering important, current, and sustainability challenges should contain more than theoretical knowledge in high-quality education, particularly in engineering education. The purpose is to bridge the gap between the new technology and the learner’s circumstances through giving practical technical expertise and training in the sphere of overall engineering competences, to avoid non-standard, unskilled maintenance work. This article presents the first phase towards designing and developing a test bench of an electric vehicle’s powertrain used for research, learning and e-learning purposes, employing model-based systems engineering (MBSE) and systems modeling language (SysML) through the CESAM architecting and modeling framework. The aforementioned approach is used on our case study to build and present an operational viewpoint layout of the control, energy management, diagnostic, and prognostic test bench as part of the system’s initial phase of designing the system; the test bench layout proposed in this paper represents a flexible, low-cost, multidisciplinary downsized laboratory providing basic experiments related to e-mobility and covering numerous branches and study fields.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Systematic Review on the Integration of Artificial Intelligence into Energy Management Systems for Electric Vehicles: Recent Advances and Future Perspectives;World Electric Vehicle Journal;2024-08-13

2. Design of a Flocculation-Thickening Test Bench for Laboratory Operations Using Model-Based System Engineering;2023 3rd International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME);2023-07-19

3. Diagnostic and Prognostic Health Management of Electric Vehicle Powertrains : A Data Driven Approach for Induction Motor;2023 3rd International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME);2023-07-19

4. Smart Energy Management System: Predictive Maintenance for Dry Power Transformers Using Transfer Learning;2023 3rd International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME);2023-07-19

5. Data-driven Diagnostics for Electric Traction Systems: A Study of Induction Motor;IEEE EUROCON 2023 - 20th International Conference on Smart Technologies;2023-07-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3