Abstract
In this paper, a phase change microcapsule suspension MPCMS25 with a mass fraction of 10% was prepared with TH-ME25 as the phase change microcapsule particles and deionized water as the base fluid. The experimental benches of the Building Integrated Photovoltaic (BIPV) system and BIPV-MPCMS system were set up, and the comparative tests were carried out in Nanjing to study the optimization effect of phase change microcapsule suspension on the thermal and electrical properties of the BIPV system. The results show that MPCMS25 reduces the component temperature of the system by 8.8 °C and the backplane temperature by 11.1 °C. The optimization time of the component operating temperature and the backplane temperature is 9.5 h and 9.75 h, respectively. Delay appearance of peak module operating temperature by 114 min and peak backplane temperature by 125 min. In addition, the suspension can also improve the power conversion efficiency (PCE) of photovoltaic modules by 0~5%. After a simulation study on the energy consumption of a high-speed railway station, it is found that using the BIPV-MPCMS system as the building envelope can achieve an energy saving rate of about 8.5%.
Funder
the Opening Funds of State Key Laboratory of Building Safety and Built Environment and National Engineering Research Center of
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献