Arsenic-Resistant Plant Growth Promoting Pseudoxanthomonas mexicana S254 and Stenotrophomonas maltophilia S255 Isolated from Agriculture Soil Contaminated by Industrial Effluent

Author:

Huda Noor ul,Tanvir Rabia,Badar Javaria,Ali Iftikhar,Rehman Yasir

Abstract

In many areas of developing countries, agriculture soil is irrigated with water from drains contaminated with industrial wastewater that contains many toxic substances including arsenic. Such sites could be explored for arsenic-resistant plant growth-promoting microbes. Ten arsenic-resistant bacteria were isolated from such a site and were characterized. Their ability to resist and reduce/oxidize arsenic was determined. The bacteria were also analyzed for plant growth-promoting abilities such as auxin and hydrogen cyanide production, phosphate solubilization, and nitrogen fixation. The effect of these bacteria on plant growth was determined using Vigna radiata both in presence and absence of arsenic. Bacterial isolates S254 and S255 showed maximum resistance against arsenic; up to 225 mM of As(V) and 25 mM of As(III). The phylogenetic analysis revealed that strain S254 belonged to the species Pseudoxanthomonas mexicana and strain S255 belonged to the species Stenotrophomonas maltophilia. Both P. mexicana S254 and S. maltophilia S255 showed positive results for hydrogen cyanide production, auxin production, and nitrogen fixation. P. mexicana S254 produced auxin at a concentration of 14.15 µg mL−1 and S. maltophilia S255 produced auxin as high as 68.75 µg mL−1. Both the bacteria-enhanced the growth of V. radiata and a statistically significant increase in shoot and root lengths was observed both in the presence and absence of arsenic. The application of such bacteria could be helpful for the growth of plants in arsenic-contaminated lands.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3