Evaluating the Sustainable Development of the Semiconductor Industry Using BWM and Fuzzy TOPSIS

Author:

Shen Shih-Ping,Tsai Jung-Fa

Abstract

In recent years, the advancement of electronic technology has been driving a boom in the semiconductor industry worldwide. When implementing business activities, those involved strive to pursue the balanced development of the economy, society, environment, and ecology. Our proposed model provides a systematic analysis process to help conduct a comprehensive evaluation and determine priorities in the semiconductor industry’s pursuit of sustainable development. In the proposed model, we determine the weights of evaluation criteria using the Best Worst Method, which overcomes the shortcomings of AHP. Meanwhile, we incorporate the concept of the aspiration level to optimize the fuzzy TOPSIS technique. The results reveal that the two most important criteria are green resource integration and pollution-discharge treatment for sustainable development in the semiconductor industry. In the traditional TOPSIS method, pollution-discharge treatment is considered the expected value, leading the decision-maker to believe that no improvement is required for pollution-discharge treatment. The model proposed in this study can overcome the abovementioned shortcoming and offer more reliable managerial implications.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3