All-Sky Soil Moisture Estimation over Agriculture Areas from the Full Polarimetric SAR GF-3 Data

Author:

Luo Dayou,Wen XingpingORCID,Xu Junlong

Abstract

This study aims to estimate the soil moisture (SM) in all-sky agriculture areas using fully polarimetric synthetic aperture radar (SAR) Gaofen-3 (GF-3) data. The radar vegetation index (RVI) is obtained using the radar SAR data, which overcomes the difficulty that the optical data cannot construct the vegetation index in cloud-covered areas. The RVI is introduced into the water cloud model (WCM) to remove the contribution of vegetation to the total radar backscatter σ0 and obtain the soil backscattering coefficients σsoil0 with HH and VV polarization. Subsequently, σsoil0 and radar frequency data are introduced into the Chen model, and a semi-empirical model of SM estimation is established. The main findings of this study are as follows: (1) Compared with the σ0, the σsoil0 obtained by the WCM has a stronger correlation with the SM. (2) In the cloud covered area, the accuracy of the estimated SM by synergistically using the WCM and the Chen model is ideal. An RMSE of 0.05 and a correlation coefficient (r) of 0.69 are achieved. In this study, the SM estimation method is not affected by clouds, and it shows many advantages for sustainable development, monitoring soil drought degree, and other related research.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3